Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 17(8): e0011507, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37639406

RESUMO

Naja atra bite is one of the most common severe snakebites in emergency departments. Unfortunately, the pathophysiological changes caused by Naja atra bite are unclear due to the lack of good animal models. In this study, an animal model of Naja atra bite in Guangxi Bama miniature pigs was established by intramuscular injection at 2 mg/kg of Naja atra venom, and serum metabolites were systematically analyzed using untargeted metabolomic and targeted metabolomic approaches. Untargeted metabolomic analysis revealed that 5045 chromatographic peaks were obtained in ESI+ and 3871 chromatographic peaks were obtained in ESI-. Screening in ESI+ modes and ESI- modes identified 22 and 36 differential metabolites compared to controls. The presence of 8 core metabolites of glutamine, arginine, proline, leucine, phenylalanine, inosine, thymidine and hippuric acid in the process of Naja atra bite was verified by targeted metabolomics significant difference (P<0.05). At the same time, during the verification process of the serum clinical samples with Naja atra bite, we found that the contents of three metabolites of proline, phenylalanine and inosine in the serum of the patients were significantly different from those of the normal human serum (P<0.05). By conducting functional analysis of core and metabolic pathway analysis, we revealed a potential correlation between changes in key metabolites after the Naja atra bite and the resulting pathophysiological alterations, and our research aims to establish a theoretical foundation for the prompt diagnosis and treatment of Naja atra bite.


Assuntos
Naja naja , Mordeduras de Serpentes , Humanos , Animais , Suínos , China , Metabolômica , Venenos Elapídicos , Inosina
2.
Artigo em Inglês | MEDLINE | ID: mdl-37441002

RESUMO

Background: Bungarus multicinctus is one of the most dangerous venomous snakes prone to cardiopulmonary damage with extremely high mortality. In our previous work, we found that glutamine (Gln) and glutamine synthetase (GS) in pig serum were significantly reduced after Bungarus multicinctus bite. In the present study, to explore whether there is a link between the pathogenesis of cardiopulmonary injury and Gln metabolic changes induced by Bungarus multicinctus venom. We investigated the effect of Gln supplementation on the lung and heart function after snakebite. Methods: We supplemented different concentrations of Gln to mice that were envenomated by Bungarus multicinctus to observe the biological behavior, survival rate, hematological and pathological changes. Gln was supplemented immediately or one hour after the venom injection, and then changes in Gln metabolism were analyzed. Subsequently, to further explore the protective mechanism of glutamine on tissue damage, we measured the expression of heat-shock protein70 (HSP70), NF-κB P65, P53/PUMA by western blotting and real-time polymerase in the lung and heart. Results: Gln supplementation delayed the envenoming symptoms, reduced mortality, and alleviated the histopathological changes in the heart and lung of mice bitten by Bungarus multicinctus. Additionally, Gln increased the activity of glutamine synthetase (GS), glutamate dehydrogenase (GDH) and glutaminase (GLS) in serum. It also balanced the transporter SLC7A11 expression in heart and lung tissues. Bungarus multicinctus venom induced the NF-κB nuclear translocation in the lung, while the HO-1 expression was suppressed. At the same time, venom activated the P53/PUMA signaling pathway and the BAX expression in the heart. Gln treatment reversed the above phenomenon and increased HSP70 expression. Conclusion: Gln alleviated the glutamine metabolism disorder and cardiopulmonary damage caused by Bungarus multicinctus venom. It may protect lungs and heart against venom by promoting the expression of HSP70, inhibiting the activation of NF-κB and P53/PUMA, thereby delaying the process of snake venom and reducing mortality. The present results indicate that Gln could be a potential treatment for Bungarus multicinctus bite.

3.
J Toxicol Sci ; 47(10): 389-407, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36104186

RESUMO

Trimeresurus stejnegeri is one of the top ten venomous snakes in China, and its bite causes acute and severe diseases. Elucidating the metabolic changes of the body caused by Trimeresurus stejnegeri bite will be beneficial to the diagnosis and treatment of snakebite. Thus, an animal pig model of Trimeresurus stejnegeri bite was established, and then the metabolites of serum and urine were subsequently screened and identified in both ESI+ and ESI- modes identified by ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS) methods. There are 9 differential metabolites in serum, including Oleic acid, Lithocholic acid, Deoxycholic acid, Hypoxanthine, etc. There are 11 differential metabolites in urine, including Dopamine, Thiocysteine, Arginine, Indoleacetaldehyde, etc. Serum enrichment pathway analysis showed that 5 metabolic pathways, including Tryptophanuria, Liver disease due to cystic fibrosis, Hartnup disease, Hyperbaric oxygen exposure and Biliary cirrhosis, the core metabolites in these pathways, including deoxycholic acid, lithocholic acid, tryptophan and hypoxanthine, changed significantly. Urine enrichment pathway analysis showed that 4 metabolic pathways, including Aromatic L-Amino Acid Decarboxylase, Vitiligo, Blue Diaper Syndrome and Hyperargininemia, the core metabolites in these pathways including dopamine, 5-hydroxyindole acetic acid and arginine. Taken together, the current study has successfully established an animal model of Trimeresurus stejnegeri bite, and identified the metabolic markers and metabolic pathways of Trimeresurus stejnegeri bite. These metabolites and pathways may have potential application value and provide a therapeutic basis for the treatment of Trimeresurus stejnegeri bite.


Assuntos
Mordeduras de Serpentes , Trimeresurus , Animais , Arginina , Cromatografia Líquida de Alta Pressão/métodos , Dopamina , Hipoxantinas , Ácido Litocólico , Suínos , Tecnologia , Mordeduras de Serpentes/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...